Calculation Methods

Addition

The different stages	Examples
Stage 1 Counting sets of objects	
Stage 2 Combining two sets of objects into one group and counting practically.	For $5+3$ the children may get 5 objects, and then 3 more and count how many altogether.
Stage 3 Drawing dots - informal jottings. Then counting how many altogether.	$3+5=8$
Stage 4 Counting on, on a number line with numbers on it.	$5+3=8$1 2 3 4 5 6 7 8 9 10
Stage 5 Steps in addition can be recorded on a number line. The steps often bridge through a multiple of 10 . 1) Partition the smaller numbers into tens and ones. 2) Add on the tens. 3) Add on the ones.	$7+8=15$ $37+28=65$

Calculation Methods

Addition

The different stages	Examples
Stage 6 Partitioned numbers are then written under one another.	$\begin{aligned} 87 \\ +20 \\ + \end{aligned} \begin{aligned} & 80+7 \\ & \hline \\ & \hline \end{aligned}$
Stage 7 Write the numbers in columns Add the tens first.	$\begin{array}{r} 87 \\ +\quad 28 \\ \hline 100 \\ 15 \\ \hline 115 \end{array}$
Adding the units first.	$\begin{array}{r} 87 \\ +\quad 28 \\ \hline 15 \\ \hline 100 \\ \hline 115 \end{array}$
Stage 8 This then becomes the shorter method where numbers get carried into the next column.	$\begin{array}{r} 87 \\ +\quad 28 \\ \hline 115 \\ \hline 11 \end{array}$
Stage 9 Later, mover to adding three two digit numbers, two three digit numbers and numbers with amounts of digits.	$\begin{array}{r} 249 \\ +\quad 96 \\ \hline \hline 345 \\ \hline 11 \end{array}$

Calculation Methods

Subtraction

| The different stages | Examples |
| :--- | :--- | :--- |
| Stage 1
 Practically get a group of objects
 together and then take some away. | |
| Stage 2
 Jottings - draw a set of marks, and
 then cross some out. | $12-5=7$ |

Calculation Methods

Subtraction

The different stages	Examples
Stage 5 Partitioned numbers are written under one another. This is how we start introducing the column subtraction method.	$\begin{aligned} & 77-25= \\ & 70+7 \\ & \frac{-20+5}{50+2}=52 \end{aligned}$
Stage 6 (Replace with 2 digit numbers) These show the two steps that lead to the shortened version of the column subtraction method. Always start with the units number.	
Stage 7 (Replace with 3 digit numbers) These show the two steps that lead lead to the shortened version of the column subtraction method. Always start with the units number.	$\begin{aligned} & 652-475= \\ & \begin{array}{c} 600+50+2 \quad 600+50+2 \\ \begin{array}{c} -400+70+5 \\ \frac{-400+70+5}{100+70+7} \\ \frac{140}{142} \\ 652 \\ 177 \end{array} \end{array} \end{aligned}$
Stage 8 (Replace with 4 digit numbers including 0)	

Calculation Methods

Multiplication

Calculation Methods

Multiplication

The different stages	Examples
Stage 5 Partitioning	$\begin{aligned} & 14 \times 6= \\ & 10 \times 6=60 \quad 4 \times 6=24 \\ & 60+24=84 \end{aligned}$
Stage 6 The grid method Place the number with the most digits in the left-hand column so that it is easier to add the answers of each part of the multiplication together.	$37 \times 8=$$x$ 8 30 240 7 56 296
Stage 7 Long multiplication The next step is to show the method of recording in a column format, but showing the working. This links to the grid method above. Children should describe what they do by saying the actual values of the digits in the column. E.g. The first step in 37×8 is 'thirty multiplied by eight', not 'three times eight.'	$30+7$ $\times 8$ $30 \times 8=240$ 240 $8 \times 7=56$ 56 8 296 37 This is the slightly $\times 8$ shorter version. 240 56
Stage 8 Short multiplication. The next step involves adding 240 and 56 mentally with only the 5 in the 56 recorded.	$\begin{array}{r} 37 \\ \times \quad 8 \\ \hline 296 \end{array}$

Calculation Methods

Multiplication

The different stages	Examples		
Stage 9	47×23		
Multiplying two, two digit numbers. This follows the same steps as the first grid method but for 2 digit numbers.	x	20	3
	40	800	120
	7	140	21

Calculation Methods

Division

Deriving and recalling division facts	
Year 2	Year 3
2 times table	3 times table

Calculation Methods

Division

The different stages	Examples
Stage 2 Children should also move onto calculations involving remainders through repeated subtraction.	
Stage 3 Children will develop their use of repeated subtraction to be able to subtract multiples of the divisor. Initially this should be multiples of $10,5,2$ and 1 - numbers with which the children are more familiar.	$22+5=4 r 2$
Stage 4 Moving onto:	$27 \div 5=5 r 2$
Stage 5 Tens Ones + Ones The vertical method. (Also known as chunking)	$72 \div 3=$

Calculation Methods

Division

The different stages	Examples
Stage 6 Hundreds Tens Ones + Ones Introduce subtracting larger multiples of ten. This is called chunking.	$289 \div 8$
Stage 7 Long division. Hundreds Tens Ones + Ones	How many packs of 36 can we make from 828 biscuits? Start by multiplying 36 by multiples of 10 to get an estimate. As 36×20 is 720 and 36×30 is 1080 so we know it is between 20 and 30 packs. We start by subtracting 720 from 828. $\begin{aligned} & 3 6 \longdiv { 8 2 8 } \\ & -\frac{720}{108} \\ & -\frac{108}{0}(36 \times 20) \\ & (36 \times 3) \\ & \text { Answer }=23 \end{aligned}$ In effect, the recording above is the long division method, though conventionally the digits of the answer are recorded above the line as shown. $\begin{array}{r} 23 \\ 3 6 \longdiv { 8 2 8 } \\ -\frac{720}{108} \\ -\frac{108}{0} \end{array}$

Calculation Methods

These are the calculation strategies used by most UK primary schools for maths. They are in stages rather than age groups as children develop mathematically at different ages. To establish which stage your child is working on, you can either ask your child's teacher or simply ask your child to carry out a related activity, for example by adding two numbers together. Just because your child is on a certain stage for one operation does not mean they will be on the same stage for others.

When your child is really confident with a stage then move them forward and start working on the next stage.

