Sacred Heart Catholic Primary School
Progression: Geometry: position and direction
Programme of study (statutory requirements)

Notes and guidance (non-statutory)

Y1	Y2	Y3	Y4	Y5	Y6
Geometry: position and direction	Geometry: position and direction		Geometry: position, and direction	Geometry: position and direction	Geometry: position and direction
Pupils use the language of position, direction and motion, including: left and right, top, middle and bottom, on top of, in front of, above, between, around, near, close and far, up and down, forwards and backwards, inside and outside. Pupils make whole, half, quarter and threequarter turns in both directions and connect turning clockwise with movement on a clock face.	Pupils should work with patterns of shapes, including those in different orientations. Pupils use the concept and language of angles to describe 'turn' by applying rotations, including in practical contexts (for example, pupils themselves moving in turns, giving instructions to other pupils to do so, and programming robots using instructions given in right angles).		Pupils draw a pair of axes in one quadrant, with equal scales and integer labels. They read, write and use pairs of coordinates $(2,5)$ including using coordinate-plotting ICT tools.	Pupils recognise and use reflection and translation in a variety of diagrams, including continuing to use a 2-D grid and coordinates in the first quadrant. Reflection should be in lines that are parallel to the axes.	Pupils draw and label a pair of axes in all four quadrants with equal scaling. This extends their knowledge of one quadrant to all four quadrants, including the use of negative numbers. Pupils draw and label rectangles (including squares), parallelograms and rhombuses, specified by coordinates in the four quadrants, predicting missing coordinates using the properties of shapes. These might be expressed algebraically for example, translating vertex (a, b) to ($a-2$, $b+3) ;(a, b)$ and (a+d, $b+d)$ being opposite vertices of a square of side d.

